

Predictive Safety Analysis

Montgomery Planning

Predictive Safety Analysis

A proactive approach to identifying safety challenges and solutions

- Estimate the expected number of crashes at intersections and segments for key crash types
- Identify safety priorities and effective mitigations
- Working with UNC Highway Safety Research Center

Predictive Safety Analysis

A proactive approach to identifying safety challenges and solutions

The Predictive Safety Analysis uses **crash risk** to understand existing safety challenges, rather relying on crash history.

Crash history is the basis of most crash analysis, but it is biased by the random nature of crashes. Even though one intersection has no crashes, and another has one or two, the underlying crash risk at both may be the same.

Reliance on crash history is a particular problem for bicycle crashes, which are **relatively rare** compared to other crash types.

Key Steps

1. Compile data

2. Estimate volumes

3. Identify key crash types

4. Develop Safety Performance **Functions**

Predictive Safety Analysis

5. Identify highrisk locations

6. Identify countermeasures

1. Compile Data

Transportation Characteristics Land

- Speed limit
- Number of lanes
- Roadway slope
- Presence and type of crosswalk
- Presence and type of bicycle facility
- Roadway classification
- Intersection control
- Lighting
- Transit service
- Predictive Safety Analysis

Parks

- Hospitals
- Gas stations Alcohol-serving locations
- Parking lots
- Schools

Demographic Characteristics

- Equity Emphasis Areas
- Income distribution
- Race/ethnicity distribution

Land Use Characteristics

- Government facilities
- Shopping centers
- ts Population density
 - Employment density

2. Estimate Volumes

- Pedestrian, bicycle, and driver activity is referred to as exposure
- Exposure is a common variable in estimating crashes
- Compiled counts from development projects, MCDOT, and SHA
- Standardize counts based on time of day, day of week, season
- Estimate counts at all intersections and segments based on transportation, land use, and demographic attributes

3. Identify Key Crash Types

Predictive Safety Analysis

Vehicle going straight

Balance capturing most crashes with crash types linked to countermeasures

3. Identify Key Crash Types

- Pedestrian crashes after dark at intersections
- Pedestrian crashes along segments with vehicles going straight
- Bicycle crashes at intersections
- Left-turn crashes at intersections (all modes)
- Motor vehicle straight/angle crashes at intersections
- Single vehicle crashes along segments

Predictive Safety Analysis

Left-Turn Crashes

Straight/ Angle Crashes

3. Identify Key Crash Types

Crash types address crashes of all severities to provide a large same size of locations. These crash types were selected given their high injury rates, and overall, they capture a large percentage of severe injuries and fatalities.

Crash Types Summary (2015-2019)

Crash Type	% Severe Injuries & Fatalities
Pedestrian Crashes	73%
Bicycle Crashes	65%
Motor Vehicle Crashes	41%
All Crash Types	49%

Annual Pedestrian Crashes at an Intersection =

- A*Number of Daily Pedestrians +
- B*Number of Daily Vehicles +
- C*Speed Limit of Major Road +
- D*Speed Limit of Minor Road +
- E*Number of Intersection Approaches +
- F* Number of High-Visibility Crosswalks

This is an illustrative example and not based on real data!

Pedestrian segment crashes with vehicles going straight

Sta	Relationship to crashes	
Exposuro	Pedestrian traffic	+
Exposure	Motor vehicle traffic	+
	Segment length	+
	Dead end	-
Transportation	Street class (state road, major road)	+
	Parking lots	+
	Number of marked crosswalks	+
	Bus routes	+
	Alcohol establishments	+
Land Use	Recreational points of interest	_
	Business points of interest	_
Democrachica	Population density	+
Demographics	Income	_

1	High Crash Risk & Low Observed Crashes	High & High Ol
lisk	This is the benefit of being proactive! Prioritize improvements at these locations.	Prioritize at the
crash I	Low Crash Risk & Low Observed Crashes	Low & High Ol
	These locations are not a priority.	Review th safety issue in the mode

Observed Crashes

Predictive Safety Analysis

h Crash Risk Observed Crashes

ze improvements lese locations!

w Crash Risk Observed Crashes

	High Crash Risk & Low Observed Crashes This is the benefit of being proactive! Prioritize	High & High Ol Prioritize at the
ish Risk	Low Crash Risk	Low
Cra	These locations are not a priority.	Review th safety issue in the mode

Observed Crashes

Predictive Safety Analysis

h Crash Risk Observed Crashes

ze improvements lese locations!

w Crash Risk Observed Crashes

Crash Risk

High Crash Risk & Low Observed Crashes	Higl & High O
This is the benefit of being proactive! Prioritize improvements at these locations.	Prioritiz at the
Low Crash Risk	Lov
& Low Observed Crashes	& High O
These locations	Review t
are not a priority.	safety issu in the mod
	-

Observed Crashes

Predictive Safety Analysis

h Crash Risk Observed Crashes

ze improvements lese locations!

w Crash Risk Observed Crashes

	High Crash Risk & Low Observed Crashes	High & High Ol
lisk	This is the benefit of being proactive! Prioritize improvements at these locations.	Prioritize at the
crash	Low Crash Risk & Low Observed Crashes	Low & High Ol
	These locations are not a priority.	Review th safety issue in the mode

Observed Crashes

Predictive Safety Analysis

h Crash Risk Observed Crashes

ze improvements lese locations!

w Crash Risk Observed Crashes

- **Total Annual Crash Risk** the sum of the crash risk for each crash type. This assessment determines which areas have the greatest overall crash risk.
- Hot Spot Analysis looks at the top 200 locations with the highest crash risk. This analysis determines the specific locations with the greatest safety challenges and can inform stand-alone capital projects.
- Average Annual Crash Risk applies a broader lens to understanding crash risk by dividing the number of crashes by the number of locations for each crash type. This analysis determines type of locations with the greatest safety challenges and can inform systemic improvements.

Equity Emphasis Areas vs. Non-Equity Emphasis Areas

FFA	#	Intersection Crashes			# Segs	Segment Crashes		
	Ints.	Ped Dark	Bike	Left Turn	Angle	π Segs.	Ped Seg	Single Veh
			Total Cras	h Risk (# Annu	al Crashes)			
EEA	3,087	49	25	253	280	5,049	32	125
Non-EEA	13,606	58	62	482	595	26,033	51	663
	-	Hot	Spot Analysis	(# Locations v	vithin the Top	200)		-
EEA	3,087	107	67	80	75	5,049	133	26
Non-EEA	13,606	93	133	120	125	26,033	67	174
Average Crash Risk (# Annual Crashes per Location)								
EEA	3,087	0.02	0.01	0.08	0.36	5,049	.007	.025
Non-EEA	13,606	0.00	0.00	0.04	0.20	26,033	.002	.026

Highlighted cells have the highest value for any column.

Equity Emphasis Areas vs. Non-Equity Emphasis Areas

FFA	#	Intersection Crashes			# Seas	Segment Crashes		
	Ints.	Ped Dark	Bike	Left Turn	Angle	π Segs.	Ped Seg	Single Veh
			Total Cras	h Risk (# Annu	al Crashes)	-	-	-
EEA	3,087	49	25	253	280	5,049	32	125
Non-EEA	13,606	58	62	482	595	26,033	51	663
	Hot Spot Analysis (# Locations within the Top 200)							
EEA	3,087	107	67	80	75	5,049	133	26
Non-EEA	13,606	93	133	120	125	26,033	67	174
Average Crash Risk (# Annual Crashes per Location)								
EEA	3,087	0.02	0.01	0.08	0.36	5,049	.007	.025
Non-EEA	13,606	0.00	0.00	0.04	0.20	26,033	.002	.026

Highlighted cells have the highest value for any column.

+270% +75% +130% +82%

+226%

-4%

Complete Streets Design Guide Area Type (Annual Crashes)

	# lists	Intersection Crashs			# C orro	Segment Crashes		
CSDG Area Type	# INTS.	Ped Dark	Bike	Left Turn	Angle	# segs.	Ped Seg	Single Veh
			Total Crash	n Risk (# Anr	nual Crashes)			
Downtown	372	32	12	87	87	786	13	42
Town Center	810	20	11	132	132	1,722	17	83
Suburban	12,187	37	49	340	474	22,602	39	430
Country	1,027	0	2	22	20	1,898	3	155
	Hot Spot Analysis (# Locations within the Top 200)							
Downtown	372	88	47	22	27	786	53	3
Town Center	810	45	36	42	43	1,722	75	20
Suburban	12,187	40	87	87	97	22,602	34	95
Country	1,027	0	0	1	4	1,898	1	67
		Average	Crash Risk	(# Annual C	Crashes per Lo	ocation)		
Downtown	372	0.09	0.03	0.24	0.73	786	0.02	0.06
Town Center	810	0.03	0.01	0.18	0.75	1,722	0.01	0.05
Suburban	12,187	0.00	0.00	0.03	0.17	22,602	0.00	0.02
Country	1,027	0.00	0.00	0.02	0.16	1,898	0.00	0.08

Highlighted cells have the highest value for any column.

Portion of Total Annual Crash Risk included in Top 200 Locations

Motor vehicle straight/angle crashes at four-legged interse

Pedestrian crashes after dark at intersections

Left-turn crashes at intersections (all modes)

Single vehicle crashes along segments

Bicycle crashes at intersections

Pedestrian crashes along segments with vehicles going str

	% Crash Risk in Top 200
ections	48%
	47%
	46%
	27%
	25%
raight	23%

Portion of Total Annual Crash Risk included in Top 200 Locations

Single vehicle crashes along segments

Bicycle crashes at intersections

Pedestrian crashes along segments with vehicles going str

	% Crash Risk in Top 200
ections	48%
	47%
	46%
	27%
	25%
raight	23%

Portion of Total Annual Crash Risk included in Top 200 Locations

Motor vehicle straight/angle crashes at four-legged interse

Pedestrian crashes after dark at intersections

Left-turn crashes at intersections (all modes)

Single vehicle crashes along segments

Bicycle crashes at intersections

Pedestrian crashes along segments with vehicles going str

	% Crash Risk in Top 200
ections	48%
	47%
	46%
	27%
	25%
raight	23%

5. Identify High-Risk Locations Key Takeaways

- Investments need to balance location types with high total crash risk, hot spots, and location types with high average crash risk.
- Prioritization needs to look beyond crash history, as only 55% of fatalities and 46% of severe injuries occurred in top 200 intersections and roadway segments.
- Safety improvements in Equity Emphasis Areas should be prioritized.
- While much of the county is suburban, downtown and town center area types have high average crash risk.

6. Identify Countermeasures

Speed Management

- Automated Enforcement Speed Cameras
- Lower Speed Limit by 5 MPH
- Speed Humps

Pedestrian Crossings

- High-Visibility Crosswalks
- Raised Pedestrian Crosswalk
- Pedestrian Hybrid Beacon

Intersection Control

- Convert Side-Street Stop to All-Way Stop
- Install Traffic Signal
- Convert Median to a "Left-In-Only" Median

Predictive Safety Analysis

Signal Timing

- Increase All-Red Clearance Interval
- Implement Protected/Permissive Left Turn
- Implement Fully Protected Left Turn
- Leading Pedestrian Interval

Other Countermeasures

- Centerline Rumble Strips
- Lighting

6. Identify Countermeasures

Dynamic tools to evaluate different countermeasure scenarios through the following metrics:

- Potential Crash Reduction
- Cost per Crash Reduced
- Percent of Locations in Equity Emphasis Area

Print a list of top-ranked locations for each scenario.

Predictive Safety Analysis

25

6. Identify Countermeasures Determining which Countermeasures to Implement

Example Scenarios for Reducing Angle Crashes with \$350,000 (10-Year Impact)

Scenarios	Increase All Red Clearance*	All-Way Stop	Traffic Signal
Number of Locations	116	70	1
Total Estimated Cost	\$348,000	\$350,000	\$350,000
Predicted Crash Reduction	2,557	311	47
Crash Reduction per Location	22.0	4.4	47.4
Cost per Crashes Reduced	\$140	\$1,130	\$7,380
% of Locations in Equity Emphasis Areas	47%	21%	0%

* on Boulevards, Downtown Boulevards, Town Center Boulevards, Major Highways

Applications

The Predictive Safety Analysis is the **first step** towards implementing a proactive approach to safety. Can be used to apply a **data-driven** approach to recommendations, mitigation, and prioritization, and can be incorporated into:

- CIP Project Funding
- Systemic Projects Prioritization

Predictive Safety Analysis

Master Planning

Regulatory Review

• Grant Applications

Questions?

Jesse Cohn McGowan

jesse.mcgowan@samschwartz.com

